کاربرد نوروشهرسازی در طراحی شهری: ارزیابی تأثیرات پیچیدگی بصری بر پاسخ‌های عصب شناختی عابران پیاده

نوع مقاله : مقاله مروری

نویسندگان

1 دانشیار گروه معماری و شهرسازی، دانشگاه هنر ایران، تهران، ایران

2 دانشجوی دکتری شهرسازی، گروه معماری و شهرسازی، دانشگاه هنر ایران، تهران، ایران

چکیده

رشد شتابان شهرها در غیاب ضوابط کنترلی مؤثر، پاسخگویی شهرها به نیازهای شناختی و فیزیولوژیکی شهروندان را با بحران مواجه نموده است. نوروشهرسازی به‌عنوان رویکردی نوظهور، با ادغام شهرسازی، روان‌شناسی‌محیطی و عصب‌شناسی، به تحلیل بازخوردهای عصبی مغز نسبت به محیط‌های شهری می‌پردازد تا تعامل مثبت انسان و محیط بازسازی شود. در این میان پیچیدگی بصری بعنوان عاملی که عدم تعادل در آن مستقیما با فیزیولوژی انسان در ارتباط است، در چارچوب این رویکرد می‌تواند از منظری جدید مورد مطالعه قرارگیرد. پژوهش حاضر پس از بررسی مفهوم پیچیدگی بصری در طراحی‌شهری، به طیف بهینه پیچیدگی بصری پرداخته و به معرفی امکانات نوروشهرسازی در بررسی این فاکتور محیطی می‌پردازد. مطالعات اخیر در حوزه نوروشهرسازی نشان داده‌اند که رابطه میان وحدت و تنوع در محیط‌های شهری را می‌توان از طریق تحلیل سرعت پردازش عصبی داده‌های بصری بررسی کرد. شواهد تجربی حاکی از آن است که امواج بتا با میزان پیچیدگی فرم‌های فراکتال ارتباط مستقیم دارند؛ داده‌های حاصل از الکتروانسفالوگرافی (EEG) نشان می‌دهند که این ابزار می‌تواند به‌عنوان راهکاری مؤثر برای بررسی تجربیات شناختی مرتبط با وحدت و تنوع و همچنین سرعت پردازش عصبی به‌کار رود. علاوه بر این، نوسانات فرکانس تتا در نواحی پیشانی و بالای پیشانی با عملکردهای شناختی نظیر حافظه کاری، حافظه اپیزودیک و جهتیابی ارتباط معناداری دارند. افزایش دامنه فعالیت سیگنال‌های EEG اغلب بیانگر کاهش نمایانی عناصر محیطی است، در حالی که کاهش دامنه این سیگنال‌ها به افزایش نمایانی این عناصر اشاره دارد. در نهایت، محدودیت‌های فنی ابزارهای نقشه‌برداری عصبی در محیط‌های واقعی، از جمله حساسیت به نویزهای محیطی و حرکت، به‌عنوان چالش‌های اصلی شناسایی شده‌اند. به همین دلیل، استفاده از محیط‌های واقعیت مجازی (VR) به‌عنوان ابزاری نوین برای کنترل متغیرهای محیطی و کاهش اثر محدودیت‌های فنی پیشنهاد می‌شود. این رویکرد امکان دستکاری سیستماتیک متغیرهای مرتبط با پیچیدگی بصری و بهبود دقت در ثبت داده‌های عصبی را فراهم می‌آورد.

تازه های تحقیق

  •  معرفی طیف پیچیدگی بصری در ارتباط با فرم شهری و نه محرک‌های انتزاعی معمول در مطالعات آزمایشگاهی.
  •  معرفی نورو شهرسازی و پتانسیل‌های روش‌شناسانه آن به‌عنوان یکی از جریانات نوظهور واجد کاربرد در حوزه مطالعه پیچیدگی بصری
  • بررسی روش‌های مختلف ثبت گرافیکی امواج مغزی، و معرفی روش الکتروانسفالوگرافی به‌عنوان ابزاری مناسب جهت مطالعه اثرات نورولوژیک پیچیدگی بصری کالبد شهری، در قالب روش الکتروفیزیولوژی شناختی.
  •  جمع‌آوری و تحلیل مطالعات الکتروانسفالوگرافی در ارتباط با طیف پیچیدگی بصری و معرفی فاکتورهای مورد ارزیابی.
  • بررسی محدودیت‌های فنی و زمینه‌ای رویکرد نورو- شهرسازی  در مطالعه طیف پیچیدگی بصری کالبد شهری.

کلیدواژه‌ها


عنوان مقاله [English]

The Application of Neuro-Urbanism in Urban Design: Evaluating the Effects of Visual Complexity on Pedestrians' Neurocognitive Responses

نویسندگان [English]

  • Amir Shakibamanesh 1
  • Narges َAhmadpour 2
1 Faculty of Architecture and Urban planning, Tehran Art university, IR
2 Tehran Art university, Faculty of Architecture & Urban planning
چکیده [English]

The rapid growth of cities and the absence of effective regulatory frameworks, have disrupted the reciprocal interaction between humans and built environments. These challenges have compromised cities’ ability to address the cognitive and physiological needs of their citizens. Neuro-urbanism, as an emerging approach, integrates urban planning, environmental psychology, and neuroscience to analyze neural feedback from the brain in response to urban environments, aiming to restore positive human-environment interaction. Among the various factors, visual complexity -directly linked to human physiology- can be reexamined within this framework from a novel perspective.
This study explores the concept of visual complexity in urban design, introduces the optimal spectrum of visual complexity, and identifies the capabilities of neuro-urbanism in examining this environmental factor. Recent studies in neuro-urbanism reveal that the relationship between unity and diversity in urban environments can be assessed through the analysis of neural processing speed for visual data. Empirical evidence indicates a direct correlation between beta waves and the complexity of fractal forms. Data obtained from electroencephalography (EEG) demonstrate that this tool can effectively examine cognitive experiences related to unity and diversity as well as neural processing speed. Additionally, theta frequency oscillations in frontal and prefrontal areas show significant associations with cognitive functions such as working memory, episodic memory, and spatial orientation. Increases in EEG signal amplitude often signify reduced salience of environmental elements, while decreases in amplitude indicate heightened salience. Finally, technical limitations of neuroimaging tools in real-world environments -such as sensitivity to environmental noise and movement- have been identified as major challenges. To address these issues, virtual reality (VR) environments are proposed as innovative tools to control environmental variables and mitigate technical constraints. This approach enables systematic manipulation of visual complexity variables and enhances the accuracy of neural data recording.

کلیدواژه‌ها [English]

  • Neuro-urbanism
  • Visual Complexity
  • Brain Waves
  • Neuroimaging
  • Virtual Reality
  • Adli, M. (2011). Urban stress and mental health. Nature, 474(7349), 452–454.
  • Banaei, M., Yazdanfar, A., Nooreddin, M., & Yoonessi, A. (2015). Enhancing urban trails design quality by using electroencephalography device. Procedia-Social and Behavioral Sciences, 201, 386-396.
  • Boeing Geoff, 2018, Measuring the Complexity of Urban Form and Design, pre print of Urban design International.
  • Cassarino M and Setti A ,2016, Complexity As Key to Designing Cognitive-Friendly Environments for Older People. Front. Psychol. 7:1329. doi: 10.3389/fpsyg.2016.01329
  • Chiao, J. Y., & Ambady, N. (2010). Cultural neuroscience: Parsing universality and diversity across levels of analysis. Handbook of Cultural Psychology, 237–254. (oup.com)
  • Cohen, M. X. (2014). Analyzing neural time series data: theory and practice. The MIT Press.
  • Cupchik, G. C., & Berlyne, D. E. (1979). The perception of collative properties in visual stimuli. Scandinavian journal of psychology, 20(1), 93-104.
  • Donderi, D. C. ,2006, Visual complexity: A review. Psychological Bulletin, 132(1), 73-97. https://doi.org/10.1037/0033-2909.132.1.73
  • Ellard, C. (2015). Places of the heart: The psychogeography of everyday life. Bellevue Literary Press.
  • Ellard, C. (2015). Places of the heart: The psychogeography of everyday life. Bellevue literary press.
  • Elsheshtawy Yasser, 1997, Urban Complexity: Toward The Measurment of the Physical Complexity of treet-scape, Journal of Architectural and Planning Research 14, No., pp. 301 316,Published by: Locke Science Publishing Company, Inc.
  • Frumkin, H., Bratman, G. N., Breslow, S. J., Cochran, B., Kahn, P. H., Lawler, J. J., Levin, P. S.,.
  • Hagerhall, C. M., Purcell, T., & Taylor, R. (2004). Fractal dimension of landscape silhouette outlines as a predictor of landscape preference. Journal of environmental psychology, 24(2), 247-255.
  • Huo Juan, 2015, A measurement method for the mismatch between the image target and salient points as a metric for image complexity, in Science and Information Conference (SAI), pp. 645–649.
  • Huo Juan, 2016, An Image Complexity Measurement Algorithm with Visual Memory Capacity and an EEG Study, SAI Computing Conference, July 13-15, 2016, London, UK.
  • Kacha, L., Matsumoto, N., & Mansouri, A. (2015). Electrophysiological evaluation of perceived complexity in streetscapes. Journal of Asian Architecture and Building Engineering, 14(3), 585-592.
  • Lynch, K. (1960). The image of the city. MIT Press.
  • Malik, A. S., & Amin, H. U. (2017). Designing EEG experiments for studying the brain: Design code and example datasets. Academic Press.
  • Mavros, P., Austwick, M.Z. & Smith, A.H., 2016, Geo-EEG: Towards the Use of EEG in the Studyof Urban Behaviour, Appl. Spatial Analysis , 9: 191. https://doi.org/10.1007/s12061-015-9181-z.
  • Mavros, P., Coyne, R., Roe, J., & Aspinall, P. A. ,2012, Engaging the brain: implications of mobile EEG for spatial representation. In Proceedings of the 30th International Conference on Education and Research in Computer Aided Architectural Design in Europe, September 12-14 2012, Prague, Czech Republic: Digital Physicality (Vol. 2, pp. 657-665)
  • Müller, V., Lutzenberger, W., Preißl, H., Pulvermüller, F., & Birbaumer, N. (2003). Complexity of visual stimuli and non-linear EEG dynamics in humans. Cognitive Brain Research, 16(1), 104-110.
  • Ode, Å., Hagerhall, C. M., & Sang, N. (2010). Analysing visual landscape complexity: theory and application. Landscape research, 35(1), 111-131.
  • Portella Adriana ,2014, Visual Pollution Advertising, Signage and Environmental Quality, Oxford Brookes University, The Joint Centre for Urban Design, UK .
  • Post, R. (2016). The beauty of Unity-in-Variety: Studies on the multisensory aesthetic appreciation of product designs.
  • Rapoport Amos , Hawkes Ron ,1970, The Perception Of Urban Complexity, Journal of the American Institute of Planners36:2, 106-111.
  • Rapoport Amos , Kantor Robert E. ,1967, Complexity and Ambiguity in Environmental Design, Journal of the American Institute of Planners, 33:4, 210-221.
  • Rapoport Amos , Kantor Robert E. ,1967, Complexity and Ambiguity in Environmental Design, Journal of the American Institute of Planners, 33:4, 210-221.
  • Salingaros Nikos A, 2017, How Neuroscience Can Generate a Healthier Architecture,Conscious Cities Journal No.3, Conscious Cities Anthology 2018: Human-Centred Design, Science, and Technology.
  • Salingaros, N. (2017). Why we need to “grasp” our surroundings: Object affordance and prehension in architecture. Journal of Architecture and Urbanism, 41(3), 163-169.
  • Salingaros, N. A. (2000). Complexity and urban coherence. Journal of Urban Design, 5(3), 291–297.
  • Salingaros, N. A., & Masden, K. (2008). Neuroscience, the natural environment, and building design. Biophilic design: The theory, science and practice of bringing buildings to life, 41(3).
  • Sanei, S., & Chambers, J. A. (2013). EEG signal processing. John Wiley & Sons.
  • Tawil, N., & Kühn, S. (2024). The built environment and the brain: Review of emerging methods to investigate the impact of viewing architectural design. In Environmental Neuroscience (pp. 169–226). Springer. (springer.com)
  • Ulrich, R. S., Simons, R. F., Losito, B. D., Fiorito, E., Miles, M. A., & Zelson, M. (1991). Stress recovery during exposure to natural and urban environments. Journal of Environmental Psychology, 11(3), 201–221.
  • Van Humbeeck, N., Meghanathan, R. N., Wagemans, J., Van Leeuwen, C., & Nikolaev, A. R. (2018). Presaccadic EEG activity predicts visual saliency in free‐viewing contour integration. Psychophysiology, 55(12), e13267.
  • Vidal, F. (2017). Exploring the brain in the city: Neuroscience and urbanism. Frontiers in Human Neuroscience, 11, 482–486
  • تاریخ دریافت: 13 مهر 1403
  • تاریخ بازنگری: 15 آبان 1403
  • تاریخ پذیرش: 14 آذر 1403
  • تاریخ اولین انتشار: 30 دی 1403
  • تاریخ انتشار: 30 دی 1403